Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
نویسندگان
چکیده
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
منابع مشابه
Optimization of Thermalisation Loss in the Quantum Dot Solar Cells using a Finite Element Method
As thermalisation loss is the dominant loss process in the quantum dot intermediate band solar cells (QD-IBSCs), it has been investigated and calculated for a QD-IBSC, where IB is created by embedding a stack of InAs(1-x) Nx QDs with a square pyramid shape in the intrinsic layer of the AlPySb(1-y) p-i-n structure. IB, which is an optically coupled but electrically isolated mini-band, divides th...
متن کاملThermalisation by a boson bath in a pure state
We consider a quantum system weakly coupled to a large heat bath of harmonic oscillators. It is well known that such a boson bath initially at thermal equilibrium thermalises the system. We show that assuming a priori an equilibrium state is not necessary to obtain the thermalisation of the system. We determine the complete Schrödinger time evolution of the subsystem of interest for an initial ...
متن کاملیک نظریه جایگزین برای مکانیک بوهمی
In this article, a causal model on the basis of trajectory is introduced for description of quantum systems. This theory is structurally very similar to Bohme mechanics, and like Bohme theory reproduces all statistical consequences of standard quantum mechanics. Particle trajectories in this model are different from anticipated ones by Bohme model. Quantum potential (force) form, which is give...
متن کاملMixing properties of stochastic quantum Hamiltonians
Random quantum processes play a central role both in the study of fundamental mixing processes in quantum mechanics related to equilibration, thermalisation and fast scrambling by black holes, as well as in quantum process design and quantum information theory. In this work, we present a framework describing the mixing properties of continuous-time unitary evolutions originating from local Hami...
متن کاملar X iv : q ua nt - p h / 05 11 22 5 v 3 17 O ct 2 00 6 The foundations of statistical mechanics from entanglement : Individual states vs . averages
We consider an alternative approach to the foundations of statistical mechanics, in which subjective randomness, ensemble-averaging or time-averaging are not required. Instead, the universe (i.e. the system together with a sufficiently large environment) is in a quantum pure state subject to a global constraint, and thermalisation results from entanglement between system and environment. We for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reports on progress in physics. Physical Society
دوره 79 5 شماره
صفحات -
تاریخ انتشار 2016